Sequential Randomized Matrix Factorization for Gaussian Processes: Efficient Predictions and Hyper-parameter Optimization
نویسندگان
چکیده
This paper presents a sequential randomized lowrank matrix factorization approach for incrementally predicting values of an unknown function at test points using the Gaussian Processes framework. It is well-known that in the Gaussian processes framework, the computational bottlenecks are the inversion of the (regularized) kernel matrix and the computation of the hyper-parameters defining the kernel. The main contributions of this paper are two-fold. First, we formalize an approach to compute the inverse of the kernel matrix using randomized matrix factorization algorithms in a streaming scenario, i.e., data is generated incrementally over time. The metrics of accuracy and computational efficiency of the proposed method are compared against a batch approach based on use of randomized matrix factorization and an existing streaming approach based on approximating the Gaussian process by a finite set of basis vectors. Second, we extend the sequential factorization approach to a class of kernel functions for which the hyperparameters can be efficiently optimized. All results are demonstrated on two publicly available datasets.
منابع مشابه
تعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملBatched Gaussian Process Bandit Optimization via Determinantal Point Processes
Gaussian Process bandit optimization has emerged as a powerful tool for optimizing noisy black box functions. One example in machine learning is hyper-parameter optimization where each evaluation of the target function may require training a model which may involve days or even weeks of computation. Most methods for this so-called “Bayesian optimization” only allow sequential exploration of the...
متن کاملApplying Model-Based Optimization to Hyperparameter Optimization in Machine Learning
This talk will cover the main components of sequential modelbased optimization algorithms. Algorithms of this kind represent the state-of-the-art for expensive black-box optimization problems and are getting increasingly popular for hyper-parameter optimization of machine learning algorithms, especially on larger data sets. The talk will cover the main components of sequential model-based optim...
متن کاملAlgorithms for Hyper-Parameter Optimization
Several recent advances to the state of the art in image classification benchmarks have come from better configurations of existing techniques rather than novel approaches to feature learning. Traditionally, hyper-parameter optimization has been the job of humans because they can be very efficient in regimes where only a few trials are possible. Presently, computer clusters and GPU processors m...
متن کاملTransitional Annealed Adaptive Slice Sampling for Gaussian Process Hyper-parameter Estimation
Surrogate models have become ubiquitous in science and engineering for their capability of emulating expensive computer codes, necessary to model and investigate complex phenomena. Bayesian emulators based on Gaussian processes adequately quantify the uncertainty that results from the cost of the original simulator, and thus the inability to evaluate it on the whole input space. However, it is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.06989 شماره
صفحات -
تاریخ انتشار 2017